K-Nearest Neighbor Estimation of Functional Nonparametric Regression Model under NA Samples

نویسندگان

چکیده

Functional data, which provides information about curves, surfaces or anything else varying over a continuum, has become commonly encountered type of data. The k-nearest neighbor (kNN) method, as nonparametric one the most popular supervised machine learning algorithms used to solve both classification and regression problems. This paper is devoted estimators functional model when observed variables take values from negatively associated (NA) sequences. consistent complete convergence rate for proposed kNN estimator first provided. Then, numerical assessments, including simulation study real data analysis, are conducted evaluate performance method compare it with standard kernel approach.

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Nonparametric Regression Estimation under Kernel Polynomial Model for Unstructured Data

The nonparametric estimation(NE) of kernel polynomial regression (KPR) model is a powerful tool to visually depict the effect of covariates on response variable, when there exist unstructured and heterogeneous data. In this paper we introduce KPR model that is the mixture of nonparametric regression models with bootstrap algorithm, which is considered in a heterogeneous and unstructured framewo...

متن کامل

Unsupervised K-Nearest Neighbor Regression

In many scientific disciplines structures in highdimensional data have to be found, e.g., in stellar spectra, in genome data, or in face recognition tasks. In this work we present a novel approach to non-linear dimensionality reduction. It is based on fitting K-nearest neighbor regression to the unsupervised regression framework for learning of low-dimensional manifolds. Similar to related appr...

متن کامل

Simultaneous Interval Regression for K-Nearest Neighbor

In some regression problems, it may be more reasonable to predict intervals rather than precise values. We are interested in finding intervals which simultaneously for all input instances x ∈ X contain a β proportion of the response values. We name this problem simultaneous interval regression. This is similar to simultaneous tolerance intervals for regression with a high confidence level γ ≈ 1...

متن کامل

a nonparametric model by using k-nearest neighbor technique for predicting soil saturated hydraulic conductivity

abstract saturated hydraulic conductivity (ks) is needed for many studies related to water and solute transport, but often cannot be measured because of practical and/or cost-related reasons. nonparametric approaches are being used in various fields to estimate continuous variables. one type of the nonparametric lazy learning algorithms, a k-nearest neighbor (k-nn) algorithm, was introduced and...

متن کامل

An Introduction to Kernel and Nearest-Neighbor Nonparametric Regression

Your use of the JSTOR archive indicates your acceptance of JSTOR's Terms and Conditions of Use, available at http://www.jstor.org/about/terms.html. JSTOR's Terms and Conditions of Use provides, in part, that unless you have obtained prior permission, you may not download an entire issue of a journal or multiple copies of articles, and you may use content in the JSTOR archive only for your perso...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Axioms

سال: 2022

ISSN: ['2075-1680']

DOI: https://doi.org/10.3390/axioms11030102